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Abstract

This research presents a deep-learning framework
designed to forecast neurological recovery following a
cardiac arrest-induced coma. The framework is created
by the team ISIBrno-AIMT as part of the Predicting
Neurological Recovery from Coma After Cardiac Arrest:
The George B. Moody PhysioNet Challenge 2023. Our
approach involves a two-stage model: initially, the
model derives low-dimensional embeddings from short
electroencephalogram (EEG) segments (5 minutes), and
subsequently, it combines the temporal progression (72
hours) of these embeddings to yield a comprehensive
likelihood assessment of recovery outcomes. Regrettably,
our submission was not evaluated in the ranking phase due
to issues with the Docker pipeline.

1. Introduction

Cardiac arrest, characterized by the sudden loss of heart
function, is a life-threatening event that often results in a
profound lack of oxygen supply to the brain. This critical
period of oxygen deprivation leads in 80 % of patients to a
coma state [1]. Less than half of patients eventually wake
up from a coma [2].

The prediction of neurological recovery from coma
following cardiac arrest stands as a pivotal pursuit in
contemporary clinical neurology. Many cardiac arrests
occur outside the hospital and prognostic information from
before the cardiac arrest is not available. The patient’s
prognosis is therefore estimated from data taken after the
patient has fallen into a coma. The most widely used
modality for assessing the severity of coma in clinical
practice is electroencephalogram (EEG). Other important
predictors of neurological outcome are based on clinical
examination of motor response and ocular reflexes, and
evaluation of certain biomarkers from blood serum, blood
plasma, or CT imaging [3].

The disadvantages of continuous EEG analysis are
subjectivity and time consumption. In addition, the

evaluation can only be performed by neurologists with
advanced training in neurophysiology. Therefore, fully
automatic EEG classifiers have been created in recent
years [4]. These classifiers have the potential to increase
prediction accuracy while saving time for the human
expert.

Utilization of deep-learning was proven to be effective
in processing biological signals such as ECG [5] and
EEG [6]. For this reason, we believe that deep-learning
approach should be also effective for coma recovery
prediction. This article aims to present a method for fully
automatic prediction of neurological recovery from coma
following cardiac arrest using deep learning models. This
method was submitted to the George B. Moody PhysioNet
Challenge 2023 [7].

2. Method

The method pipeline is depicted in Figure 1. Firstly, we
preprocessed data by creating the bipolar signals from the
uni-polar recordings in the dataset. All recordings were
then resampled to 100 Hz and normalized by the z-score.

The model then comprises two primary components: the
Embedding Extractor (Fig.1A) and the Temporal Model,
both of which utilize extracted embeddings to analyze
temporal patterns.

The Embedding Extractor (Fig.1A) is a convolutional
neural network, primarily trained as a patient outcome
classifier. It takes as input a spectrogram derived from
a 5-minute segment of the electroencephalogram (EEG)
signal. These 5-minute segments are extracted from the
original 1-hour patient EEG signal recordings and are
annotated with the corresponding patient outcomes. The
network’s output provides the probability of the patient’s
outcome. The signal embedding is obtained from the
128-dimensions linear layer of the embedding extractor.

The second component (Fig.1B) of the model is a
neural network, which comprises a transformer encoder
[8] followed by linear layers at the model’s conclusion.
The selection of the transformer encoder is motivated by
its utilization of the attention mechanism, enabling it to
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Figure 1. The figure shows the training pipeline and proposed model architecture i.e. convolutional neural network
embedding extractor and transformer encoder for classifying recovery outcome. A) Embedding extractor from the 5-minute
segments. B) Transformer encoder model that predicts outcome given also the temporal information. C) Optimization loops
for A) and B) models. Each model is optimized separately.

consider the context from any part of the input. This model
takes as input a matrix of embeddings that have been
generated for each of the 72 hours of patient recordings
as follows:

1. Temporal Segmentation: The data is divided into
5-minute chunks.
2. Embedding Extraction: These chunks are processed
through an embedding extractor.
3. Embedding Aggregation: The mean and maximum
embeddings are computed and concatenated.

These steps are applied to each non-missing recording
within a 72-hour period for a patient. The resulting
embeddings are organized into a matrix, with the x-axis
representing time in hours. Missing hours are filled with
vectors containing the value −1.

2.1. Transformer Encoder

The matrix is passed through a Transformer Encoder
with three different linear layers, generating query (Q),

key (K), and value (V ) matrices. Multi-head attention
is applied to Q, K, and V , where each head computes the
attention mechanism using the formula:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk represents the dimension of the key matrix K.
The results from the multiple heads are concatenated and
processed through another linear layer.

2.2. Training

The model is trained in two stages (Fig.1C). First, the
embedding extractor is trained independently. Then, the
network with the Transformer Encoder is trained, with the
embedding extractor held fixed.
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2.3. Prediction for Less Than 72 Hours

For predictions with less than 72 hours of data, the
model treats the missing hours as if they were missing data
and fills those hours with vectors containing the value −1.

2.4. ECG Signal Analysis:

In the investigation of ECG signals, we employed
an analogous training process to that used for EEG
data. Regrettably, the embedding extractor yielded
inconclusive results when applied to the ECG signals. This
ineffectiveness was primarily due to the absence of ECG
recordings for a substantial number of patients and the
suboptimal quality of the available data. Therefore, we did
not include ECG data as input in the final submission.

2.5. Feature Examination

We also conducted an analysis of the provided features,
such as patient Age and Gender, among others. Our
examination revealed that the only noteworthy feature was
the patient’s age, which exhibited a discernible trend: older
patients had a reduced likelihood of recovery (i.e., a poor
outcome). During an unofficial experimentation phase,
we explored training the model both with and without
concatenating the features with the extracted embeddings.
However, no discernible advantages were observed from
including these features. Consequently, we excluded them
from our model.

3. Results

Table 1. The table presented herein displays the outcomes
of our cross-validation experiments, which were executed
on training set. Specifically, the model was assessed by
conducting tests on each individual hospital that had been
omitted from the training set.

Hospital Percentage of Percentage of Challenge
code public dataset poor outcomes Score

A 43.00 53.26 0.410
B 19.77 72.00 0.151
D 13.67 67.47 0.518
E 12.19 79.73 0.780
F 11.37 60.87 0.619

Avg – – 0.500
Std – – 0.211

In light of our submission not attaining a ranking
during the evaluation phase, we initiated a comprehensive

experimental regimen, along with test-train splits. In
this process, we conducted cross-validation individually
on each of the hospitals contained within the dataset.
Consequently, each iteration of the test set comprised
solely one hospital, which had been deliberately excluded
from the training set. Subsequently, we compiled and
reported the results obtained for all participating hospitals,
including the overall mean and standard deviation of the
performance metrics.

It is important to note that only hospitals A, B, D,
E, and F are accessible within the public section of the
challenge dataset. Notably, hospital A accounts for half of
the patients in the dataset [9].

All of our models underwent training from an initial
state. The embedding extractor was trained utilizing a
learning rate of 0.001, an exponential scheduler with a
decay factor of 0.9, and the Adam optimizer. Concurrently,
the temporal model was trained using a learning rate of
0.001, an exponential scheduler with a decay factor of
0.9, which was applied every 2 epochs, and the Adam
optimizer. The outcomes of our experiments are presented
in Table 1 and Table 2.

Table 2. True positive rate at a false positive rate of 0.05
(the official Challenge score) for our final selected entry
(team ISIBrno-AIMT), including the ranking of our team
on the hidden test set. We used 5-fold cross validation
on the public training set, repeated scoring on the hidden
validation set, and one-time scoring on the hidden test set.

Training Validation Test Ranking
0.5± 0.2 - - -

4. Discussion

In the reported results in Table 1, hospitals D, E,
and F displayed similar performance, as indicated by an
average challenge score of 0.639 and a standard deviation
of 0.108. These hospitals consistently produced the
anticipated results.

However, hospital A exhibited a notably lower challenge
score, standing at merely 0.410. It is worth noting that
hospital A constitutes a substantial portion, approximately
43%, of the open dataset patient population. Consequently,
the model was trained on slightly more than half of
the dataset, which likely contributed to its reduced
performance in this specific case.

The performance of the model on the hospital B dataset
notably deviates from that observed in other datasets. This
discrepancy could be attributed to the presence of specific
features within the hospital B data that are absent in the
datasets of other hospitals. Furthermore, it is conceivable
that there may be inadequacies or shortcomings in the
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model training process that have contributed to this
suboptimal performance.

5. Conclusion

This paper has introduced a deep-learning model
for predicting neurological recovery in individuals who
have experienced coma following cardiac arrest. We
present the two-stage approach, involving the extraction
of low-dimensional EEG embeddings from short signal
segments (5 minutes) using a convolutional neural network
and subsequent aggregation of temporal embeddings (over
72 hours) that are classified by transformer encoder
network.

While our submission did not receive a ranking in
the evaluation phase due to technical challenges with
the Docker pipeline, our local environment experiments
demonstrated the feasibility of the prediction task. We
achieved a challenge score of 0.500 ± 0.211 (mean±std)
through rigorous local cross-validation.

It’s important to note that during our experiments, we
found that the integration of ECG signals into our model
did not lead to a notable improvement in the prediction
scores. This unexpected observation underscores the
complexity of the prediction task and the need for further
investigation into the relationship between ECG signals
and neurological recovery.

In summary, further refinement of our model and
addressing the technical issues encountered during the
submission/evaluation phase will be necessary. This
research represents a step toward leveraging deep
learning for improved neurological recovery prediction
and underscores the importance of continued exploration
in this critical healthcare domain.
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